Harnack Inequalities for Log-Sobolev Functions and Estimates of Log-Sobolev Constants

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Logarithmic Sobolev Inequalities for Log-Subharmonic Functions

We prove an intrinsic equivalence between strong hypercontractivity (sHC) and a strong logarithmic Sobolev inequality (sLSI) for the cone of logarithmically subharmonic (LSH) functions. We introduce a new large class of measures, Euclidean regular and exponential type, in addition to all compactly-supported measures, for which this equivalence holds. We prove a Sobolev density theorem through L...

متن کامل

Sharp Stability Theorems for the Anisotropic Sobolev and Log-sobolev Inequalities on Functions of Bounded Variation

Combining rearrangement techniques with Gromov’s proof (via optimal mass transportation) of the 1-Sobolev inequality, we prove a sharp quantitative version of the anisotropic Sobolev inequality on BV (R). As a corollary of this result, we also deduce a sharp stability estimate for the anisotropic 1-log-Sobolev inequality.

متن کامل

Modified Log-sobolev Inequalities and Isoperimetry

We find sufficient conditions for a probability measure μ to satisfy an inequality of the type ∫ Rd fF ( f ∫ Rd f 2 dμ ) dμ ≤ C ∫ Rd f2c∗ ( |∇f | |f | ) dμ + B ∫ Rd f dμ, where F is concave and c (a cost function) is convex. We show that under broad assumptions on c and F the above inequality holds if for some δ > 0 and ε > 0 one has ∫ ε 0 Φ ( δc [ tF ( 1t ) Iμ(t) ]) dt <∞, where Iμ is the isop...

متن کامل

Log-sobolev Inequalities with Potential Functions on Pinned Path Groups

We establish a refined version of Gross’s log-Sobolev inequalities on pinned path groups. We explain the reason why it is useful in a lower bound estimate of Schrödinger operators on path spaces.

متن کامل

On Equivalence of Super Log Sobolev and Nash Type Inequalities

We prove the equivalence of Nash type and super log Sobolev inequalities for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz-Sobolev type inequalities. No ultracontractivity of the semigroup is assumed. It is known that there is no equivalence between super log Sobolev or Nash type inequalities and ultracontractivity. We discuss Davies-Simon’s counterexample as bor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1999

ISSN: 0091-1798

DOI: 10.1214/aop/1022677381